Probabilistic Motion Planning in Uncertain and Dynamic Environments

Bingyu Zhou
Supervisor: Dr. Javier Alonso-Mora
Delft University of Technology, The Netherlands

September 26, 2017

Content

- Introduction
- Problem Statement
- Joint Behavior Estimation and Planning
- Behavior Estimation
- Receding Horizon Trajectory Planning
- Results
- Contributions and Future work

Introduction

The MIT-Cornell Collision in DARPA Urban Challenge 2017

1. Sensor data association; 2. Failure to anticipate vehicle's intention;
2. Overemphasis on lane constraints ${ }^{1}$.
[^0]
Cooperative VS Non-cooperative

- Cooperative planning: All the agents mutually affect each other (interactions)
- Non-cooperative planning:

The ego-vehicle takes all responsibility to avoid collision. \rightarrow Freezing robot problem ${ }^{2}$.

Figure: Cooperative planning and Non-cooperative planning

[^1]
Problem Statement

Targeted problems

- How to model the interaction between the ego-vehicle and obstacles?
- How to incorporate the uncertainty of motion intentions into the trajectory planning?

Figure: Where and How will the obstacle react?

Problem Statement

- States: $\mathbf{z}^{R}=[x, y, \theta, \delta, v], \mathbf{z}^{A}=[x, y, \theta, v, g], \mathbf{s}=[x, y]$, motion intention $g \in \mathcal{G}=\{$ Going straight, Turning, Stopping $\}$
- Controlled actions: $\mathbf{u}=\left[u^{\delta}, u^{a}\right]$
- Trajectory of vehicle: $\pi_{i}\left(g_{j}\right)=\left\{\mathbf{s}_{0}^{i}, \mathbf{s}_{1}^{i}, \ldots, \mathbf{s}_{m}^{i}\right\}$
- Multipolicy under all motion intentions: $\Pi^{i}=\left\{\pi_{i}\left(g_{1}\right), \ldots, \pi_{i}\left(g_{l}\right)\right\}$
- Likelihood of motion intentions: $\mathcal{W}=\left\{w_{1}, \ldots, w_{l}\right\}$
- Optimization problem:

$$
\begin{array}{lr}
\mathbf{u}_{0: m-1}^{*}=\min _{u_{0: m-1}} \sum_{k=0}^{m-1} J\left(\mathbf{z}_{k}, \mathbf{u}_{k}\right)+J\left(\mathbf{z}_{m}\right) & \\
\text { s.t. } \quad \mathbf{z}_{k+1}^{R}=f\left(\mathbf{z}_{k}^{R}, u_{k}\right), & \forall k=\{0, \ldots, m-1\} \\
\mathbf{z}_{\min }^{R}<\mathbf{z}_{k}^{R}<\mathbf{z}_{\max }^{R}, & \forall k=\{0, \ldots, m\} \tag{1}\\
\mathbf{u}_{\min }<\mathbf{u}_{k}<\mathbf{u}_{\max }, & \forall k=\{0, \ldots, m-1\} \\
\text { Estimate } \Pi^{i} \text { and } \mathcal{W}^{i} \text { given } \pi^{R}, \quad \forall i=\{1, \ldots, n\} \\
\mathbf{s}_{k}^{R} \notin \mathbf{B}_{k}^{i}\left(\mathcal{W}^{i}, \Pi^{i}\right), & \forall i=\{1, \ldots, n\},
\end{array}
$$

Joint Behavior Estimation and Planning

- Leverage the strengths of POMDP and MPC
- Chance constraint formulation for collision avoidance

Assumptions:

(1) The obstacle vehicles follow a reference path for each motion intention.
(2) The boundary of road is given.
(3) The reference path of the vehicle is the central line of the road.

Joint Behavior Estimation \& Planning - Overview

Figure: Scheme of joint behavior estimation and planning

Behavior Estimation

Aim:

Formulate a POMDP model to compute the optimal sequence of actions Π^{A} for obstacle vehicles under all motion intentions g.

Typical POMDP framework:

$$
\left\{\mathbf{Z}, \mathbf{A}, \mathbf{O}, T\left(\mathbf{z}_{t+1}, a_{t}, \mathbf{z}_{t}\right), O\left(\mathbf{o}_{t}, \mathbf{z}_{t+1}, a_{t}\right), R(\mathbf{z}, a)\right\}
$$

- State Z: $\mathbf{z}^{R}=[x, y, \theta], \mathbf{z}^{A}=[x, y, \theta, v, g]$
- Action $\mathbf{A}: \mathbf{A}=\{$ Acceleration, Deceleration, Maintain $\}$
- Observation O: $\mathbf{o}^{R}=[x, y, \theta], \mathbf{o}^{A}=[x, y, \theta]$

Behavior Estimation

- Transition $T\left(\mathbf{z}_{t+1}, a_{t}, \mathbf{z}_{t}\right)$: The ego-vehicle follows the computed policy from MPC planner (initially assume the constant velocity model).

$$
\left[\begin{array}{l}
x_{t+1} \\
y_{t+1} \\
\theta_{t+1} \\
v_{t+1}
\end{array}\right]=\left[\begin{array}{l}
x_{t} \\
y_{t} \\
\theta_{t} \\
v_{t}
\end{array}\right]+\left[\begin{array}{c}
\left(v_{t}+a \Delta t\right) \Delta t \cos \left(\theta_{t}\right) \\
\left(v_{t}+a \Delta t\right) \Delta t \sin \left(\theta_{t}\right) \\
\Delta \theta \\
a \Delta t
\end{array}\right]
$$

- Observation $O\left(\mathbf{o}_{t}, \mathbf{z}_{t+1}, a_{t}\right)$: The poses of the vehicle are directly observable.
- Reward $R(\mathbf{z}, a)$:

$$
\begin{gathered}
R(\mathbf{z}, a)=R_{\text {progress }}(\mathbf{z}, a)+R_{\text {collision }}(\mathbf{z}, a)+R_{\text {action }}(a) \\
R_{\text {collision }}=\left\{\begin{array}{ll}
-r_{c}, & \text { if } \mathbf{s}^{0} \in \mathbf{E} \\
0, & \text { others }
\end{array}, \quad R_{\text {action }}=\left\{\begin{array}{ll}
-r_{a}, & \text { if } a \in[\text { Acc, Dec }] \\
0, & \text { others }
\end{array},\right.\right. \\
R_{\text {progress }}=\beta e^{-\frac{d}{2 \sigma^{2}}}
\end{gathered}
$$

Behavior Estimation

POMDP Solver - DESPOT ${ }^{3}$

[^2]
Behavior Estimation

Behavior Estimation

Behavior Estimation

Behavior Estimation

Belief update (Particle filter)

$$
b_{t+1}=\eta O\left(\mathbf{o}_{t}, \mathbf{z}_{t+1}, a_{t}\right) \sum_{\mathbf{Z} \in \mathbf{z}} T\left(\mathbf{z}_{t+1}, a_{t}, \mathbf{z}_{t}\right) b_{t}
$$

\qquad

$$
w_{j}=\frac{\text { number of particles with motion intention } g_{j}}{\text { overall number of particles }}
$$

Receding Horizon Trajectory Planning

Aim:

Compute the optimal trajectory $\mathbf{u}_{0: m-1}$ of the ego-vehicle using the obstacles' estimated trajectories Π^{A} and associated beliefs w_{j} of intentions

$$
\begin{array}{ll}
\min _{\mathbf{u}_{0: m-1}} & \sum_{k=0}^{m-1} J\left(\mathbf{z}_{k}^{R}, \mathbf{u}_{k}, \lambda_{k}\right) \Delta t_{k}+J\left(\mathbf{z}_{m}^{R}, \lambda_{m}\right) \Delta t_{k} \\
\text { s.t. } \quad \mathbf{z}_{k+1}^{R}=f\left(\mathbf{z}_{k}^{R}, \mathbf{u}_{k}\right) \\
& \lambda_{k+1}=\lambda_{k}+v_{k} \Delta t_{k} \\
& \mathbf{z}_{\min }^{R}<\mathbf{z}_{k}^{R}<\mathbf{z}_{\max }^{R} \\
\quad \mathbf{u}_{\min }<\mathbf{u}_{k}<\mathbf{u}_{\max } \\
\quad b_{l}\left(\lambda_{k}\right)+w_{\max } \leq d\left(\mathbf{z}_{k}, \lambda_{k}\right) \leq b_{r}\left(\lambda_{k}\right)-w_{\max } \\
\quad \mathbf{s}_{k}^{0} \notin \mathbf{E}_{k}^{i}\left(\mathcal{W}^{i}, \Pi^{i}\right) \quad \forall i=\{1, \ldots, n\} \\
& \forall k=\{1, \ldots, m-1\}
\end{array}
$$

Receding Horizon Trajectory Planning

Probabilistic Collision Constraint:

Compute the uncertainty ellipses for each obstacle vehicle regarding under a certain collision probability p_{ϵ} regarding the multiple policies Π^{A} and associated weights \mathcal{W}

Receding Horizon Trajectory Planning

Receding Horizon Trajectory Planning

- Cost function:

$$
J=\mathbf{p}^{T}\left[\begin{array}{c}
\left\|\hat{e}_{k}^{c}\left(x_{k}, y_{k}, \lambda_{k}\right)\right\|^{2} \\
\left\|\hat{e}_{k}^{l}\left(x_{k}, y_{k}, \lambda_{k}\right)\right\|^{2} \\
v_{k} \Delta t_{k} \\
\left\|u_{k}^{Z}\right\|^{2} \\
\left\|u_{k}^{\delta}\right\|^{2} \\
\left\|\dot{\theta}_{k}\right\|^{2}
\end{array}\right]
$$

- Dynamics:

$$
\left[\begin{array}{c}
\dot{x} \\
\dot{y} \\
\dot{\theta} \\
\dot{\delta} \\
\dot{v}
\end{array}\right]=\left[\begin{array}{c}
v \cos (\theta) \\
v \sin (\theta) \\
\frac{v}{L} \tan (\delta) \\
0 \\
0
\end{array}\right]+\left[\begin{array}{ll}
0 & 0 \\
0 & 0 \\
0 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{c}
u^{\delta} \\
u^{a}
\end{array}\right]
$$

Results

DESPOT
 FORCES ${ }^{\text {pro }}$:O $_{\circ}^{\circ}$

Figure: Simulation platform

Results

Negotiation with 4 obstacles in T-junction scenario

Simulation in T-junction Scenario

Task:
Navigate the ego-vehicle to safely merge to the traffic with the negotiation of 4 obstacle vehicles.

Results

Figure: ROS graph of simulation

Results

Figure : Computation time for our method

Conclusion

Table : Comparison with state-of-the-art

Approach	Real time	Scalability	Safety	Non-holonomic Model
Our approach	\checkmark	$\checkmark \checkmark$	$\checkmark \checkmark$	$\checkmark \checkmark$
IGP 4	$\checkmark \checkmark$	$\checkmark \checkmark$	\checkmark	\checkmark^{1}
Multipolicy 5	$\checkmark \checkmark \checkmark$	\checkmark	$\checkmark \checkmark$	$\checkmark \checkmark^{2}$
Online POMDP 6	\checkmark	$\checkmark \checkmark$	$\checkmark \checkmark$	\checkmark

1: Gaussian process as the dynamic model
2: Ego-vehicle's motion is restricted in the predefined policy sets

[^3]
Conclusion and Future Work

Contributions:

- A joint behavior estimation and trajectory planning method, utilizing the strengths of MPC and online POMDPs to achieve intention-aware navigation.
- A chance constrained formulation of MPC accounting for the uncertainty in the motion intentions of other traffic participants, over multiple motion policies.

Future work:

- The real time capability of the estimation needs to be improved.
- The uncertainty of the dynamics needs to be considered for the obstacle vehicle's model.
- It would be highly interesting to test it in a mobile robot.

Thanks! Q \& A

[^0]: ${ }^{1}$ L. Fletcher, S. Teller, E. Olson, et al., "The MIT - Cornell collision and why it happened", Springer Tracts in Advanced Robotics, vol. 56, pp. 509-548, 2009

[^1]: ${ }^{2}$ P. Trautman and A. Krause, "Unfreezing the robot: Navigation in dense, interacting crowds", IEEE/RSJ 2010 International Conference on Intelligent Robots and Systems, IROS 2010 - Conference Proceedings, pp. 797-803, 2010

[^2]: ${ }^{3}$ A. Somani, N. Ye, D. Hsu, and W. S. Lee, "DESPOT : Online POMDP Planning with Regularization", Advances in Neural Information Processing Systems, pp. 1-9, 2013

[^3]: ${ }^{4}$ P. Trautman, J. Ma, R. M. R. M. Murray, and A. Krause, "Robot Navigation in Dense Human Crowds: the Case for Cooperation", Cds.Caltech.Edu, pp. 2153-2160, 2013
 ${ }^{5}$ E. Galceran, A. G. Cunningham, R. M. Eustice, and E. Olson, "Multipolicy decision-making for autonomous driving via changepoint-based behavior prediction", in Proceedings of Robotics: Science and Systems (RSS), Rome, Italy, 2015
 ${ }^{6}$ W. Liu, S. W. Kim, S. Pendleton, and M. H. Ang, "Situation-aware decision making for autonomous driving on urban road using online POMDP", , in IEEE Intelligent Vehicles Symposium, Proceedings, vol. 2015-August, 2015, pp. 1126-1133

