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Introduction

Vector Field (VF) Path Following

Given a reference path R2(R3), build up a group of vectors around the
reference path as the control inputs (steering angle, speed) to the UAV
so that it can converge to the reference path asymptotically.

Weakness:
Standard VF only works for known, constant wind disturbance
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Introduction

Why not using Adaptive Control?
• Compensate the wind disturbance

• Limit the path following error at least bounded
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Kinematics and Control Task

• UAV kinematics in 2D

ẋ = Va cosψ +W cosψw +A cosψA

ẏ = Va sinψ +W sinψw +A sinψA
(1)

Figure: UAV kinematics

x , y : position of UAV
Va: airspeed of UAV
ψ: heading angle between airspeed and
horizontal axis
χ′: UAV’s course angle
W : Constant wind amplitude
A: Time Varying wind amplitude
ψw : angle of constant wind in earth frame
ψA: angle of time varying wind in earth
frame
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Kinematics and Control Task

• Assumptions

1 Altitude and airspeed (Va) are held constant by the longitudinal
control of UAV;

2 The UAV is equipped with the course-hold loop devices whose
dynamics can be modeled as the first-order system

χ̇′ = α(χc − χ′)

3 The UAV course is measurable;
4 A slowly time-varying unknown component of wind with amplitude

A(t) and angle ψA(t).

• Control task
Build up the control law χc to let the UAV follow the path as
accurately as possible under the wind disturbance.
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Kinematics and Control Task
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Path Following Strategies

Adaptive Vector Field Path Following Strategy:

• Straight Line Following

• Orbit Path Following
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Straight Line Following

Task

Find the control law which can steer the UAV to the reference straight
line and keep along with the path.

Figure: Straight line following

1 Distance error
e = y − (ax + b)

2 Course error
χ̃′ = χ′ − χd

3 Desired course

χd = −χ∞
2

π
tan−1(ke) + tan−1(a)

k : a positive constant influences the rate
of course transition from χ∞ to tan−1(a).
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Straight Line Following

• If χ′ → χd , distance error will converge to zero.

Proof.

Lyapunov function V1 = 1
2e

2

V̇1 = e(ẏ − aẋ)
= eV ′

g(sinχd − a cosχd)

= eV ′
g

sin(iχ∞ 2
π tan−1(ke))

cos(tan−1 a)
< 0
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Straight Line Following

• Then derive the control law of the course angle
Define the Lyapunov function V2 = 1

2 χ̃
′2

V̇2 = χ̃′ ˙̃χ′

= χ̃′(α(χc − χ′) + χ∞
2

π

kė

1 + (ke)2
)

= χ̃′(α(χc − χ′) + χ∞
2

π

k

1 + (ke)2
V ′
g(sinχ′ − a cosχ′))

Ideally, if we choose the command course as

χc = χ′ −
1

α
χ∞

2

π

k

1 + (ke)2
V ′
g(sinχ′ − a cosχ′) − κ

α
sat( χ̃

′

ε
) (2)

κ > 0: the shape of the trajectories on the sliding surface;
ε > 0: the width of the transition region at the sliding surface.

The derivative of Lyapunov function is negative semi-definite.
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Straight Line Following

Unfortunately, the control law (Eq.(2)) can not be implemented
directly!!

χc = χ′ −
1

α
χ∞

2

π

k

1 + (ke)2
V ′
g(sinχ′ − a cosχ′) − κ

α
sat( χ̃

′

ε
)

We need ESTIMATOR for the ground velocity V ′
g

χc = χ′ −
1

α
χ∞

2

π

k

1 + (ke)2
V̂g

′(sinχ′ − a cosχ′) − κ
α
sat( χ̃

′

ε
) (3)
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Straight Line Following

Time to design the estimator for ground velocity.
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Straight Line Following

Theorem

In straight line following scenario, the command course (Eq.(3)) and the
estimator

˙̂V ′
g = Γρχ̃′χ∞

2

π

k

1 + (ke)2
(sinχ′ − a cosχ′) − σΓV̂g

′
(4)

(Γ > 0: the estimation gain, σ > 0: a switching σ-modification parameter.)

guarantees that the tracking error converges to zero for unknown
constant winds and stays bounded for unknown slowly time-varying
wind.

14 / 24



Straight Line Following

Proof:
Define the estimator error as Θ = V̂g

′ −V ′
g . The derivative of Lyapunov

function Ve = V1 + ρV2 + 1
2 Γ−1Θ2 is

V̇e = V̇1 + ρV̇2 + Γ−1ΘΘ̇

= V̇1 + ρχ̃′[−χ∞
2

π

k

1 + (ke)2
(V̂g

′ −V ′
g)(sinχ′ − a cosχ′)

− κsat( χ̃
′

ε
)] + Γ−1(V̂g

′ −V ′
g)(

˙̂V ′
g − V̇g

′)

ρ: positive weight term for course error, which is aimed to make the
distance error and course error compatible.
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Straight Line Following
First, we prove the tracking errors (e and χ̃′) will converge to zero

under the assumption that V̇g
′ = 0.

V̇e = V̇1 + ρχ̃′[−χ∞
2

π

k

1 + (ke)2
(V̂g

′ −V ′
g)(sinχ′ − a cosχ′) − κsat( χ̃

′

ε
)]×

+ Γ−1(V̂g
′ −V ′

g)
˙̂V ′
g

= V̇1 − ρκχ̃′sat(
χ̃′

ε
) + { ˙̂V ′

gΓ−1 − ρχ̃′χ∞ 2

π

k

1 + (ke)2
(sinχ′ − a cosχ′)}×

(V̂g
′ −V ′

g)

If the estimator is chosen as
˙̂V ′
g = Γρχ̃′χ∞ 2

π
k

1+(ke)2 (sinχ′ − a cosχ′)
Then the derivative of Ve is negative semi-definite.

V̇e = V̇1 − ρκχ̃′sat(
χ̃′

ε
)
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Straight Line Following

However, V̇e < 0 is not enough to prove the asymptotic convergence of
tracking errors to zero for time varying systems.
Barbalat’s Lemma for stability analysis of Time varying systems

V̈e = V̈1 − ρκsat(
χ̃′

ε
) ˙̃χ′

= V̈1 − ρκsat(
χ̃′

ε
)[−χ∞ 2

π

k

1 + (ke)2
(sinχ′ − a cosχ′)Θ

− κsat( χ̃
′

ε
)]

V̈e is bounded, V̇e <= 0, Ve >= 0 ⇒ V̇e → 0 as t →∞.
Conclusion: e and χ̃′ converge to zero asymptotically.

17 / 24



Straight Line Following
Then, we prove the tracking errors will be bounded for unknown slowly
time-varying wind by using the σ-modification technique.

V̇ = −ρκχ̃′sat( χ̃
′

ε
) + {( ˙̂V ′

g − V̇g
′)Γ−1 − ρχ̃′χ∞ 2

π

k

1 + (ke)2
×

(sinχ′ − a cosχ′)}(V̂g
′ −V ′

g)

= −ρκχ̃′sat( χ̃
′

ε
) − σΘ2 − σΘ(−Γ−1V̇g

′
σ−1 −V ′

g)

Using the inequality −a2 + ab ≤ −a2

2 + b2

2 for any a and b, we write

V̇ ≤ −ρκχ̃′sat( χ̃
′

ε
) − σ

2
Θ2 +

σ(V ′
g + V̇g

′
Γ−1σ−1)2

2

= −ρκχ̃′sat( χ̃
′

ε
) − σ

2
Θ2 + constant

If Θ2 ≥ 2C
σ , V̇ will be negative definite ⇒ e, χ̃′ and Θ will converge

inside a ball around the origin and stay bounded.
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Straight Line Following

• Uniform Ultimate Boundedness
The solution of ẋ = f (x , t) starting at x(t0) = x0 are Uniformly
Ultimately Bounded (UUB) with ultimate bound B if:
∃C0 > 0,T = T (C0,B) > 0 ∶ (∣∣x(t0)∣∣ ≤ C0)⇒ (∣∣x(t)∣∣ ≤ B,∀t ≥
t0 +T .

All trajectories starting in large ellipse enter small ellipse within
finite time T (C0,B).

19 / 24



Simulation Results
• Performance of controller and estimator
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• Effect of design parameters
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Orbit Path Following

• UAV kinematics in the polar
coordinate

ḋ = V ′
g cos(χ′ − γ)

γ̇ =
V ′
g

d
sin(χ′ − γ)

• Distance error
d̃ = d − r

• Course error
χ̃′ = χ′ − χd

• Desired course
χd = γ − [π2 + tan−1(kd̃)]

21 / 24



Simulation Results
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Comparison
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(b) Orbit path following

Table: Steady state RMS error for straight
line following

Std. VF Id. VF Adap. VF
RMS 0.2203 0.1573 0.1434

Table: Steady state RMS error for orbit
following

Std. VF Id. VF Adap. VF

RMS 0.33 6.08 × 10−6 0.1219
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Thanks for your attention!
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